skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sobral, Victor Ariel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Collecting, storing, and providing access to Internet of Things (IoT) data are fundamental tasks to many smart city projects. However, developing and integrating IoT systems is still a significant barrier to entry. In this work, we share insights on the development of cloud data storage and visualization tools for IoT smart city applications using flood warning as an example application. The developed system incorporates scalable, autonomous, and inexpensive features that allow users to monitor real-time environmental conditions, and to create threshold-based alert notifications. Built in Amazon Web Services (AWS), the system leverages serverless technology for sensor data backup, a relational database for data management, and a graphical user interface (GUI) for data visualizations and alerts. A RESTful API allows for easy integration with web-based development environments, such as Jupyter notebooks, for advanced data analysis. The system can ingest data from LoRaWAN sensors deployed using The Things Network (TTN). A cost analysis can support users’ planning and decision-making when deploying the system for different use cases. A proof-of-concept demonstration of the system was built with river and weather sensors deployed in a flood prone suburban watershed in the city of Charlottesville, Virginia. 
    more » « less
  2. Commercial Internet of Things (IoT) deployments are mostly closed-source systems that offer little to no flexibility to modify the hardware and software of the end devices. Once deployed, retrofitting such systems to an upgraded functionality requires replacing all the devices, which can be extremely time and cost prohibitive. End users cannot generally leverage deployed infrastructure to add their own sensors or custom data. However, we observe that IoT systems sometimes report battery voltage information to the cloud, and batteries are often user-serviceable. This indicates that perturbing the battery voltage to encode customized information could be a minimally invasive method to retrofit existing IoT devices. 
    more » « less
  3. The key to optimal occupant comfort as well as resource utilization in a smart building is to provide personalized control over smart appliances. Additionally, with an exponentially growing Internet-of-Things (IoT), reducing the need of frequent user attention and effort involving building management to control and manage an enormous number of smart devices becomes inevitable. One crucial step to enable occupant-specific personalized spaces in smart buildings is accurate identification of different occupants. In this paper, we introduce SolarWalk to show that small and unobtrusive indoor photovoltaic harvesters can identify occupants in smart home scenarios. The key observations are that i) photovoltaics are commonly used as a power source for many indoor energy-harvesting devices, ii) a PV cell's output voltage is perturbed differently when different persons pass in close range, creating an unique signature voltage trace, and iii) the voltage pattern can also determine the person' walking direction. SolarWalk identifies occupants in a smart home by training a classifier with their shadow voltage traces. SolarWalk achieves an average accuracy of 88% to identify five occupants in a home and on average 77% accurate to determine whether someone entered or exited the room. SolarWalk enables an accurate occupant identification system that is non-invasive, ubiquitous, and does not require dedicated hardware and rigorous installation. 
    more » « less
  4. While relying on energy harvesting to power Internet of Things (IoT) devices eliminates the maintenance burden of battery replacement, energy generation fluctuation constitutes a major source of uncertainty to design reliable self-powered IoT devices. To characterize spatial-temporal variability of energy harvesting, data acquisition campaigns are needed across the range of potential harvesting sources. In this work we present a dataset to characterize thermal energy sources in residential settings by measuring thermoelectric generator (TEG) operating conditions over 16 deployment locations for periods ranging from 19 to 53 days. We present our easy-to-use thermal energy measurement platform built from off-the-shelf component modules and a custom TEG interface circuit. We demonstrate how the collected measurements can inform the design of energy harvesting IoT devices by deriving the TEG's maximum power output and estimating the available energy at each harvesting location. 
    more » « less